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The idea 

When I first starting thinking about the 
subject for my final project I wanted to create 
something that was simple in concept, but that 
employed a number of the more advanced 
OpenGL concepts that I had heard about. I 
followed this format because there were many 
topics that interested me, but I didn’t know how 
many I would have time to implement. First I 
wanted to try using procedural geometry using 
L-systems, so I started out by trying to think of 
something interesting that L-systems would 
create. This is where I came up with the idea to 
create a simple forest of trees.  

I set out designing many different tree-
like L-systems. I needed the L-system for my 
tree to be fairly simple so that when I drew many 
of them, my performance didn’t suffer. I 
discovered during my experimentation that many 
L-systems that actually resembled what I 
considered normal looking trees were too 
complex for my needs. I considered many 
simple L-systems, I found many that looked very 
sparse like figure 1. 

Figure 1 

  

I thought I could add bushels of leaves to the 
endpoints of the branches in the form of a 
textured sphere to make the tree look more full, 
but what that produces is a lot of overlapped 
geometry which takes a lot of performance to 
render while not added any visual enhancement 
to the scene. Secondly I didn’t like a lot of the 
abnormal looking trees that were produced so I 
decided against using L-systems to create my 
trees.  

The Tree 

I went back to the drawing board and decided to 
geometrically define a simple looking tree. I 
wanted the tree to have varying levels of 
branches that were equidistant from each other 
and I wanted the branching factor for any level 
of branches to be linearly proportional to its level 
number. The diagrams below show my final 
design (note that the angles in the images may 
not be accurately drawn). 

Figure 2 

 

I experimented with a few different branching 
factors and decided that the number of branches 
at any level should be three times its level 
number. The resulting design created an 
aesthetically pleasing tree for levels two through 
five, but for higher levels of trees it produces 
somewhat strange looking trees. In order to 
reduce my final polygon count I wanted to limit 
the maximum number of levels to about five, but 
wouldn’t determine my actually maximum until I 
was nearly finished with the project. In the end, 
each of the trees in my forest would have a 
random number of levels between two and five 
inclusive. 

Once I had this basic design I needed to 
decide how to define the final geometry. I knew 
that the bushels of leaves would be spheres. 
These bushels are represented as circles in 
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Figure 2. I decided that to simplify my work I 
would make the branches as hemispheres that 
were scaled in the Y direction.  

I started by creating an approximation of 
a sphere by subdividing a tetrahedron but the 
result would be difficult to divide in half for my 
hemisphere and it seemed like it might be 
complicated to apply textures to it so I did some 
research and adopted the UV Sphere. To create 
a UV Sphere you start with a vector of length R 
along a chosen axis and create a vertex, I used 
the x-axis. You then rotate the vector along the 
z-axis by angle theta which is some integer that 
is a divisor of 360 degrees. You create a new 
vertex at the end of this vector. Continue doing 
this until you have the approximation of an 
equally divided circle. Then take this circle and 
rotate it around the y-axis by the same theta 
degrees and create a new circle approximation. 
Continue doing this until you have an 
approximation of an equally divided sphere. An 
example of the resulting sphere approximation is 
shown in Figure 3. 

Figure 3 

 

 

The faces at the top and bottom are 
triangles and admittedly, adding a good looking 
texture to that area is difficult. I did the best I 
could, but counted on the fact that most people 
would not be focused on the top or bottom of my 
trees. Because I was careful in deciding the 
number of angular subdivisions, the rest of my 
spheres can be unwrapped to form a rectangular 
grid of square faces that has a width that is twice 
its height. This made texture mapping that part 
of the sphere extremely simple. 

Giving the illusion of texture 

 I wanted to experiment with bump 
mapping, but upon having researched it decided 
that it seemed easier to employ normal 
mapping. Normal mapping takes a color image 
and for any given point on that image the XYZ 
values of the normal will be in proportional to the 
RGB values of the image. Generally any value in 
the RGB values of a normal map range from 0.0 
to 1.0 but the blue values tend to be in the range 
0.5 to 1.0 so that all normals continue to point 
away from the face. This is why most normal 
maps tend to have a blue tint. My spheres used 
for leaf bushels use a leaf texture and a leaf 
normal map, but I found that these spheres 
didn’t portray the effects of normal mapping very 
well so for my hemispheres I used a solid color 
for the texture and a normal map that resembled 
tree bark. Figure 4 shows the texture and normal 
map I used and the resulting hemisphere is 
shown in  Figure 5.  

Figure 4 

 

Figure 5 

 

Making it grow 

 I have always been interested in 3D 
animation and wanted to employ keyframe 
animation in my project. The concept of 
keyframe animation is fairly simple to 



understand. You can create an animated scene 
by rapidly taking pictures of an event at regular 
intervals. You can then play the animation by 
displaying those pictures on a device at those 
same intervals. For the purposes of my project, 
the pictures in my example are called frames 
and the interval is the framerate. In 3D 
animation you have a special subset of frames 
called keyframes. At the keyframe at time x you 
define a specific set of translations, rotations, 
and scaling for each object in your scene. At the 
keyframe at time y where y  > x and y-x is 
greater than the time for one interval of your 
animation you specify another set of 
translations, rotations, and scaling for the 
objects in your scene. For each frame in your 
animation between the keyframes at times x and 
y you interpolate the values of your translations, 
rotations, and scaling proportional to the amount 
of time that has passed since time x. The result 
is illustrated in Figure 6 

Figure 6 

 

My trees begin as a hemisphere that 
represents the tree’s trunk. The hemisphere is 
stretched in the y direction until it reaches its full 
height. When the trunk reaches height 
full_height/levels it spawns a new level of 
branches. The branches will reach their full 
length at the same time that the trunk reaches 
its full height which I did for simplicity. When the 
trunk and branches reach their full length the 
tree grows a bushel of leaves at the end of each 
branch and the end of the trunk.  

Complications 

 While I succeeded in creating a growing 
forest with textures and normal mapping, there 
are a number of problems that I faced in the 
process. The first was in my general code 
organization. I was still in the process of learning 
OpenGL when I started this project and my 
knowledge of C++ was a bit rusty when I first 
began this project. This project started as a 

simple codebase that has been added upon like 
adding body parts to Frankenstein’s monster. 
Unlike the monster we are familiar with, as I 
continued adding more body parts, I ended up 
with a monstrous mass of metaphorical limbs 
that were sewn together into a beast that no 
longer resembled any organized creature. This 
wasn’t an unforeseen complication. Many 
students of my Computer Graphics course at 
USU focused their projects on creating an 
organized graphics programming framework. I 
was more interested in putting Computer 
Graphics theory into practice than in creating an 
organized framework for graphics programming 
and it shows. My resulting program shows a 
very beautiful scene and implements some very 
interesting computer graphics concepts. My 
resulting code, on the other hand, is somewhat 
unorganized.  

The second complication arose when I 
was implementing normal mapping for the 
hemispheres. As the hemispheres are scaled 
mostly in the local y direction, so are their 
textures. Because the final y scale is so much 
greater than the x and z scales the final normal 
map looks very skewed and no longer 
resembles tree bark accurately. Sadly, this is 
just the nature of such radical scaling and while I 
could have compensated by altering my textures 
to have a height that was proportional to the 
scaling, but this would have increased my 
texture size and the textures would have looked 
squished when the hemisphere was at its 
original state at the beginning of the growth 
animation’s scaling.  As a result I decided 
against it. What I wanted was a way to preserve 
the look of the texture as the sphere was scaled, 
but I found no way to do this.  

 The third complication I found was in the 
processing time for my program. When I ran my 
program on my development machine I could 
create 100 simultaneously animating trees 
without a problem. If I tried to do more than that 
then my performance suffered. This was partially 
due to my lack of optimization. Each tree has a 
set of world translation, rotation and scaling that 
is randomly generated. Each branch and bushel 
of a tree has a set of translations, rotations, and 
scales relative to the tree’s position. Also 
defined for each branch and bushel is the 
interpolated animation transformation matrix. A 
translation and scale each require one matrix 
and a rotation requires three matrices, one for a 
rotation in each of the x, y, and z directions. 



Consequently for any object I needed to multiply 
15 4x4 matrices before applying any camera 
and projection transformations. These 
multiplications were done on the CPU for each 
frame because passing that many matrices to 
the shader seemed unwise. A tree has 28 
objects on average which means that a total of 
420 matrix multiplications must be done for each 
tree on the CPU each frame. This gets very 
costly with a large number of trees. 

 I could have greatly lowered this number 
by observing common behaviors in my tree. The 
transformations not involved in animation should 
have been stored for each object when I actually 
stored them as two separate matrices and 
multiplied them each frame. The first matrix is 
the tree’s global transformation matrix. The 
second matrix for any object in that tree is the 
local transformation matrix for that object. If I 
multiplied those together and saved them in the 
original object I could have severely reduced the 
number of matrix multiplications I needed to do 
each frame.  

 This is an unfortunate drawback to 
animation. Even with the best optimization, you 
still need to do a lot of calculation to animate an 
object. Because these optimizations would only 
increase the number of trees I can draw and 
because I found that my program could make a 
good forest without the optimization and 
because the amount of work it would take to 
apply this optimization was not trivial, I didn’t 
implement this optimization. 

 While not really an issue for me, I could 
have significantly reduced the amount of 
computer memory required for my project. There 
are many animations that are the same for 
objects in a tree. Each branch in a level of 
branches has the same animation: scale in the 
y-direction to scale j. Each bushel of leaves has 
the same animation. If I consolidated their 
animation matrices into one, I could have saved 
a considerable amount of memory, but because 
these animation matrices still need to be 
multiplied by each object’s other transformation 
matrices, I do not save much performance by 
employing this optimization.  

 The last complication I faced was in my 
tree placement. While I don’t mind if branches 
intertwine between trees, it is unrealistic to have 
two trees so close together that their trunks are 
on top of each other. The result is a “Siamese 

twin tree” as shown on the rights side of Figure 
7. 

Figure 7 

 

 

 I could have fixed this problem by 
implementing a collision detection algorithm 
between tree trunks, but that would have taken 
no small amount of work and would have 
increased my processing time. In a production 
environment, I would have made this 
optimization, but the purpose of this project was 
to test my knowledge of OpenGL and 3D 
graphics concepts. Collision detection is not 
directly related to graphics programming so I 
didn’t find it worth the effort. 

 

Conclusion 

 I am proud of the results of my forest 
program. To tell the truth I didn’t think I would 
have time to implement keyframe animation and 
normal mapping in the given time period. The 
resulting scene as shown below is a good 
approximation of a forest in my opinion. The 
animations worked as perfectly as I could have 
hoped. The normal mapping works just fine, but 
is somewhat wasted on this scene. Between the 
skewing caused by the animation 
transformations and the fact that the normal 
maps do very little for the forest when you are 
looking at the entire forest from a distance, it is 
hard to visually understand the power of normal 
mapping.  



 To tell the truth I was worried that my 
computer wouldn’t be able to animate an entire 
forest efficiently, but I am happy to say that it 
does an excellent job. I am particularly proud of 
how good the scene looks despite the fact that 
the only models that I define for this scene are a 
sphere, a hemisphere and a plane (used for the 
ground). I could go on, but in this case I believe 
a picture does say a thousand words. 

 

Figure 8 


