
Growing a Forest

Author: Nathan Thompson

The idea

When I first starting thinking about the
subject for my final project I wanted to create
something that was simple in concept, but that
employed a number of the more advanced
OpenGL concepts that I had heard about. I
followed this format because there were many
topics that interested me, but I didn’t know how
many I would have time to implement. First I
wanted to try using procedural geometry using
L-systems, so I started out by trying to think of
something interesting that L-systems would
create. This is where I came up with the idea to
create a simple forest of trees.

I set out designing many different tree-
like L-systems. I needed the L-system for my
tree to be fairly simple so that when I drew many
of them, my performance didn’t suffer. I
discovered during my experimentation that many
L-systems that actually resembled what I
considered normal looking trees were too
complex for my needs. I considered many
simple L-systems, I found many that looked very
sparse like figure 1.

Figure 1

I thought I could add bushels of leaves to the
endpoints of the branches in the form of a
textured sphere to make the tree look more full,
but what that produces is a lot of overlapped
geometry which takes a lot of performance to
render while not added any visual enhancement
to the scene. Secondly I didn’t like a lot of the
abnormal looking trees that were produced so I
decided against using L-systems to create my
trees.

The Tree

I went back to the drawing board and decided to
geometrically define a simple looking tree. I
wanted the tree to have varying levels of
branches that were equidistant from each other
and I wanted the branching factor for any level
of branches to be linearly proportional to its level
number. The diagrams below show my final
design (note that the angles in the images may
not be accurately drawn).

Figure 2

I experimented with a few different branching
factors and decided that the number of branches
at any level should be three times its level
number. The resulting design created an
aesthetically pleasing tree for levels two through
five, but for higher levels of trees it produces
somewhat strange looking trees. In order to
reduce my final polygon count I wanted to limit
the maximum number of levels to about five, but
wouldn’t determine my actually maximum until I
was nearly finished with the project. In the end,
each of the trees in my forest would have a
random number of levels between two and five
inclusive.

Once I had this basic design I needed to
decide how to define the final geometry. I knew
that the bushels of leaves would be spheres.
These bushels are represented as circles in

Height

Height/Levels

60˚

60˚

Figure 2. I decided that to simplify my work I
would make the branches as hemispheres that
were scaled in the Y direction.

I started by creating an approximation of
a sphere by subdividing a tetrahedron but the
result would be difficult to divide in half for my
hemisphere and it seemed like it might be
complicated to apply textures to it so I did some
research and adopted the UV Sphere. To create
a UV Sphere you start with a vector of length R
along a chosen axis and create a vertex, I used
the x-axis. You then rotate the vector along the
z-axis by angle theta which is some integer that
is a divisor of 360 degrees. You create a new
vertex at the end of this vector. Continue doing
this until you have the approximation of an
equally divided circle. Then take this circle and
rotate it around the y-axis by the same theta
degrees and create a new circle approximation.
Continue doing this until you have an
approximation of an equally divided sphere. An
example of the resulting sphere approximation is
shown in Figure 3.

Figure 3

The faces at the top and bottom are
triangles and admittedly, adding a good looking
texture to that area is difficult. I did the best I
could, but counted on the fact that most people
would not be focused on the top or bottom of my
trees. Because I was careful in deciding the
number of angular subdivisions, the rest of my
spheres can be unwrapped to form a rectangular
grid of square faces that has a width that is twice
its height. This made texture mapping that part
of the sphere extremely simple.

Giving the illusion of texture

 I wanted to experiment with bump
mapping, but upon having researched it decided
that it seemed easier to employ normal
mapping. Normal mapping takes a color image
and for any given point on that image the XYZ
values of the normal will be in proportional to the
RGB values of the image. Generally any value in
the RGB values of a normal map range from 0.0
to 1.0 but the blue values tend to be in the range
0.5 to 1.0 so that all normals continue to point
away from the face. This is why most normal
maps tend to have a blue tint. My spheres used
for leaf bushels use a leaf texture and a leaf
normal map, but I found that these spheres
didn’t portray the effects of normal mapping very
well so for my hemispheres I used a solid color
for the texture and a normal map that resembled
tree bark. Figure 4 shows the texture and normal
map I used and the resulting hemisphere is
shown in Figure 5.

Figure 4

Figure 5

Making it grow

 I have always been interested in 3D
animation and wanted to employ keyframe
animation in my project. The concept of
keyframe animation is fairly simple to

understand. You can create an animated scene
by rapidly taking pictures of an event at regular
intervals. You can then play the animation by
displaying those pictures on a device at those
same intervals. For the purposes of my project,
the pictures in my example are called frames
and the interval is the framerate. In 3D
animation you have a special subset of frames
called keyframes. At the keyframe at time x you
define a specific set of translations, rotations,
and scaling for each object in your scene. At the
keyframe at time y where y > x and y-x is
greater than the time for one interval of your
animation you specify another set of
translations, rotations, and scaling for the
objects in your scene. For each frame in your
animation between the keyframes at times x and
y you interpolate the values of your translations,
rotations, and scaling proportional to the amount
of time that has passed since time x. The result
is illustrated in Figure 6

Figure 6

My trees begin as a hemisphere that
represents the tree’s trunk. The hemisphere is
stretched in the y direction until it reaches its full
height. When the trunk reaches height
full_height/levels it spawns a new level of
branches. The branches will reach their full
length at the same time that the trunk reaches
its full height which I did for simplicity. When the
trunk and branches reach their full length the
tree grows a bushel of leaves at the end of each
branch and the end of the trunk.

Complications

 While I succeeded in creating a growing
forest with textures and normal mapping, there
are a number of problems that I faced in the
process. The first was in my general code
organization. I was still in the process of learning
OpenGL when I started this project and my
knowledge of C++ was a bit rusty when I first
began this project. This project started as a

simple codebase that has been added upon like
adding body parts to Frankenstein’s monster.
Unlike the monster we are familiar with, as I
continued adding more body parts, I ended up
with a monstrous mass of metaphorical limbs
that were sewn together into a beast that no
longer resembled any organized creature. This
wasn’t an unforeseen complication. Many
students of my Computer Graphics course at
USU focused their projects on creating an
organized graphics programming framework. I
was more interested in putting Computer
Graphics theory into practice than in creating an
organized framework for graphics programming
and it shows. My resulting program shows a
very beautiful scene and implements some very
interesting computer graphics concepts. My
resulting code, on the other hand, is somewhat
unorganized.

The second complication arose when I
was implementing normal mapping for the
hemispheres. As the hemispheres are scaled
mostly in the local y direction, so are their
textures. Because the final y scale is so much
greater than the x and z scales the final normal
map looks very skewed and no longer
resembles tree bark accurately. Sadly, this is
just the nature of such radical scaling and while I
could have compensated by altering my textures
to have a height that was proportional to the
scaling, but this would have increased my
texture size and the textures would have looked
squished when the hemisphere was at its
original state at the beginning of the growth
animation’s scaling. As a result I decided
against it. What I wanted was a way to preserve
the look of the texture as the sphere was scaled,
but I found no way to do this.

 The third complication I found was in the
processing time for my program. When I ran my
program on my development machine I could
create 100 simultaneously animating trees
without a problem. If I tried to do more than that
then my performance suffered. This was partially
due to my lack of optimization. Each tree has a
set of world translation, rotation and scaling that
is randomly generated. Each branch and bushel
of a tree has a set of translations, rotations, and
scales relative to the tree’s position. Also
defined for each branch and bushel is the
interpolated animation transformation matrix. A
translation and scale each require one matrix
and a rotation requires three matrices, one for a
rotation in each of the x, y, and z directions.

Consequently for any object I needed to multiply
15 4x4 matrices before applying any camera
and projection transformations. These
multiplications were done on the CPU for each
frame because passing that many matrices to
the shader seemed unwise. A tree has 28
objects on average which means that a total of
420 matrix multiplications must be done for each
tree on the CPU each frame. This gets very
costly with a large number of trees.

 I could have greatly lowered this number
by observing common behaviors in my tree. The
transformations not involved in animation should
have been stored for each object when I actually
stored them as two separate matrices and
multiplied them each frame. The first matrix is
the tree’s global transformation matrix. The
second matrix for any object in that tree is the
local transformation matrix for that object. If I
multiplied those together and saved them in the
original object I could have severely reduced the
number of matrix multiplications I needed to do
each frame.

 This is an unfortunate drawback to
animation. Even with the best optimization, you
still need to do a lot of calculation to animate an
object. Because these optimizations would only
increase the number of trees I can draw and
because I found that my program could make a
good forest without the optimization and
because the amount of work it would take to
apply this optimization was not trivial, I didn’t
implement this optimization.

 While not really an issue for me, I could
have significantly reduced the amount of
computer memory required for my project. There
are many animations that are the same for
objects in a tree. Each branch in a level of
branches has the same animation: scale in the
y-direction to scale j. Each bushel of leaves has
the same animation. If I consolidated their
animation matrices into one, I could have saved
a considerable amount of memory, but because
these animation matrices still need to be
multiplied by each object’s other transformation
matrices, I do not save much performance by
employing this optimization.

 The last complication I faced was in my
tree placement. While I don’t mind if branches
intertwine between trees, it is unrealistic to have
two trees so close together that their trunks are
on top of each other. The result is a “Siamese

twin tree” as shown on the rights side of Figure
7.

Figure 7

 I could have fixed this problem by
implementing a collision detection algorithm
between tree trunks, but that would have taken
no small amount of work and would have
increased my processing time. In a production
environment, I would have made this
optimization, but the purpose of this project was
to test my knowledge of OpenGL and 3D
graphics concepts. Collision detection is not
directly related to graphics programming so I
didn’t find it worth the effort.

Conclusion

 I am proud of the results of my forest
program. To tell the truth I didn’t think I would
have time to implement keyframe animation and
normal mapping in the given time period. The
resulting scene as shown below is a good
approximation of a forest in my opinion. The
animations worked as perfectly as I could have
hoped. The normal mapping works just fine, but
is somewhat wasted on this scene. Between the
skewing caused by the animation
transformations and the fact that the normal
maps do very little for the forest when you are
looking at the entire forest from a distance, it is
hard to visually understand the power of normal
mapping.

 To tell the truth I was worried that my
computer wouldn’t be able to animate an entire
forest efficiently, but I am happy to say that it
does an excellent job. I am particularly proud of
how good the scene looks despite the fact that
the only models that I define for this scene are a
sphere, a hemisphere and a plane (used for the
ground). I could go on, but in this case I believe
a picture does say a thousand words.

Figure 8

